Các bài toán trắc nghiệm về lãi suất ngân hàng năm 2024

Với cách giải các dạng toán về Các dạng toán về lãi suất ngân hàng và cách giải môn Toán lớp 12 Giải tích gồm phương pháp giải chi tiết, bài tập minh họa có lời giải và bài tập tự luyện sẽ giúp học sinh biết cách làm bài tập các dạng toán về Các dạng toán về lãi suất ngân hàng và cách giải lớp 12. Mời các bạn đón xem:

Các dạng toán về lãi suất ngân hàng và cách giải - Toán lớp 12

  1. LÝ THUYẾT VÀ PHƯƠNG PHÁP GIẢI

1. Lãi đơn

Số tiền lãi chỉ tính trên số tiền gốc mà không tính trên số tiền lãi do số tiền gốc sinh ra.

Công thức tính lãi đơn:

Trong đó:

Vn: Số tiền cả vốn lẫn lãi sau n kỳ hạn;

V0: Số tiền gửi ban đầu;

n : Số kỳ hạn tính lãi;

r : Lãi suất định kỳ, tính theo %.

2. Lãi kép

Là số tiền lãi không chỉ tính trên số tiền gốc mà còn tính trên số tiền lãi do tiền gốc đó sinh ra thay đổi theo từng định kỳ.

  1. Lãi kép, gửi một lần: Tn=T01+rn

Trong đó:

Tn: Số tiền cả vốn lẫn lãi sau n kỳ hạn;

T0 : Số tiền gửi ban đầu;

n : Số kỳ hạn tính lãi;

r : Lãi suất định kỳ, tính theo %.

  1. Lãi kép liên tục: Tn=T0.en.r

Trong đó:

Tn: Số tiền cả vốn lẫn lãi sau n kỳ hạn;

T0 : Số tiền gửi ban đầu;

n : Số kỳ hạn tính lãi;

r : Lãi suất định kỳ, tính theo %.

  1. Lãi kép, gửi định kỳ.

Trường hợp gửi tiền định kì cuối tháng.

Bài toán 1: Cứ cuối mỗi tháng gửi vào ngân hàng m triệu, lãi suất kép r% (tháng hoặc năm). Hỏi sau n (tháng hoặc năm) số tiền thu được là bao nhiêu?

Người ta chứng minh được số tiền thu được là:

Tn=mr1+rn−1

Chứng minh

Các bài toán trắc nghiệm về lãi suất ngân hàng năm 2024

Vậy sau tháng n ta được số tiền

Tn=m1+rn−1+...+m1+r+m=m1+rn−1+...+1+r+1

Ta thấy trong ngoặc là tổng n số hạng của cấp số nhân có

u1=1, un=1+rn−1, q=1+r

Ta biết rằng: Sn=u1+...+un=u1.qn−1q−1

nên Tn=mr1+rn−1

Bài toán 2: Cứ cuối mỗi tháng gửi vào ngân hàng m triệu, lãi suất kép r% (tháng hoặc năm). Sau n (tháng hoặc năm) số tiền thu được là A triệu. Hỏi số tiền gửi mỗi tháng m là bao nhiêu?

Người ta chứng minh được số tiền cần gửi mỗi tháng là: m=Ar1+rn−1

Chứng minh:

Áp dụng bài toán 1 ta có số tiền thu được là Tn=mr1+rn−1, mà đề cho số tiền đó chính là A nên :

A=mr1+rn−1⇔m=Ar1+rn−1

Bài toán 3: Cứ cuối mỗi tháng gửi vào ngân hàng m triệu, lãi suất kép r% (tháng hoặc năm). Sau n (tháng hoặc năm) số tiền thu được là A triệu. Hỏi số tháng hoặc năm n là bao nhiêu?

Người ta chứng minh được số tháng thu được đề bài cho là:

n=log1+rArm+1

Chứng minh:

Áp dụng bài toán 1 ta có số tiền thu được là Tn=mr1+rn−1, mà đề cho số tiền đó chính là A nên:

A=mr1+rn−1⇔m=Ar1+rn−1⇔1+rn=Arm+1⇔n=log1+rArm+1

Như vậy trong trường hợp một này ta cần nắm vứng công thức Bài toán 1 từ đó có thể dễ dàng biến đổi ra các công thức ở bài toán 2, Bài toán 3.

Trường hợp gửi tiền định kì đầu tháng.

Bài toán 4: Cứ đầu mỗi tháng gửi vào ngân hàng m triệu, lãi suất kép r% (tháng hoặc năm). Hỏi sau n (tháng hoặc năm) số tiền thu được là bao nhiêu?

Người ta chứng minh được số tiền thu được là:

Tn=mr1+rn−11+r

Chứng minh.

Ta xây dựng bảng sau:

Các bài toán trắc nghiệm về lãi suất ngân hàng năm 2024

Vậy sau tháng n ta được số tiền:

Tn=m1+rn+...+m1+r=m1+rn+...+1+r=m1+r1+rn−1r

Bài toán 5: Cứ đầu mỗi tháng gửi vào ngân hàng m triệu, lãi suất kép r% (tháng hoặc năm). Sau n (tháng hoặc năm) số tiền thu được là A triệu. Hỏi số tiền gửi mỗi tháng m là bao nhiêu?

Người ta chứng minh được số tiền cần gửi mỗi tháng là:

m=Ar1+r1+rn−1

Chứng minh

Áp dụng bài toán 4. Ta có số tiền thu được là: Tn=mr1+rn−11+r, mà đề cho số tiền đó là A nên:

A=mr1+rn−11+r⇔m=Ar1+r1+rn−1

Bài toán 6: Cứ đầu mỗi tháng gửi vào ngân hàng m triệu, lãi suất kép r% (tháng hoặc năm). Sau n (tháng hoặc năm) số tiền thu được là A triệu. Hỏi số tháng hoặc năm n là bao nhiêu?

Người ta chứng minh được số tháng thu được đề bài cho là:

n=log1+rArm1+r+1

Chứng minh

Áp dụng bài toán 4. Ta có: số tiền thu được là: Tn=mr1+rn−11+r, mà đề cho số tiền đó là A nên .

A=mr1+rn−11+r⇔m=Ar1+r1+rn−1⇔1+rn=Arm1+r+1⇒n=log1+rArm1+r+1

Như vậy trong trường hợp này ta cần nắm vững công thức bài toán 4 từ đó có thể dễ dàng biến đổi ra các công thức ở bài toán 5, bài toán 6.

Trường hợp vay nợ và trả tiền định kì đầu tháng.

Bài toán 7: Vay ngân hàng A triệu đồng. Cứ đầu mỗi tháng (năm) trả ngân hàng m triệu, lãi suất kép r% (tháng hoặc năm). Hỏi sau n (tháng hoặc năm) số tiền còn nợ là bao nhiêu?

Người ta chứng minh được số tiền còn nợ là:

Các bài toán trắc nghiệm về lãi suất ngân hàng năm 2024

Chứng minh.

Ta xây dựng bảng sau:

Các bài toán trắc nghiệm về lãi suất ngân hàng năm 2024

Các bài toán trắc nghiệm về lãi suất ngân hàng năm 2024

Vậy sau tháng n ta còn nợ số tiền:

Các bài toán trắc nghiệm về lãi suất ngân hàng năm 2024

Trường hợp vay nợ và trả định kì cuối tháng.

Bài toán 8: Vay ngân hàng A triệu đồng. Cứ đầu mỗi tháng (năm) trả ngân hàng m triệu, lãi suất kép r% (tháng hoặc năm). Hỏi sau n (tháng hoặc năn) số tiền còn nợ là bao nhiêu?

Người ta chứng minh được số tiền còn nợ là:

Các bài toán trắc nghiệm về lãi suất ngân hàng năm 2024

Chứng minh

Ta xây dựng bảng sau:

Các bài toán trắc nghiệm về lãi suất ngân hàng năm 2024

Các bài toán trắc nghiệm về lãi suất ngân hàng năm 2024

Vậy sau tháng n ta còn nợ số tiền:

Các bài toán trắc nghiệm về lãi suất ngân hàng năm 2024

Sau đây cùng tìm hiểu cách áp dụng các lý thuyết vào các bài toán tính tiền lãi, tiền nợ phải trả như thế nào?