Tại sao 1 không phải là số nguyên tố

Bắt đầu chương trình học cấp trung học cơ sở, các bạn học sinh chuyển cấp được tiếp xúc với nhiều khái niệm mới lạ. Trong đó, số nguyên tố là một trong những định nghĩa đầu tiên các bạn nhỏ bắt gặp. Vậy số nguyên tố là gì? Chúng được ứng dụng như thế nào trong toán học? Để tìm lời đáp cho những câu hỏi trên, mời bạn đọc cùng theo dõi bài viết dưới đây.

Bạn đang xem: Số 1 có phải là số nguyên tố không

Người ta chia các số tự nhiên làm ba nhóm số: nhóm số thứ nhất thuộc loại số nguyên tố; loại thứ hai là nhóm các hợp số; số 1 không phải là số nguyên tố cũng không thuộc loại hợp số. Số nguyên tố chỉ có thể chia hết cho số 1 và chính bản thân số đó, còn hợp số có thể chia hết cho các số khác. Ví dụ số 6 là một hợp số vì ngoài số 1 và bản thân số 6, số 6 còn có thể chia hết cho 2 và 3, vì vậy việc chia số nguyên tố và hợp số thành hai nhóm riêng biệt là hoàn toàn hợp lí. Số “1” chỉ chia hết cho 1 và bản thân nó [cũng là số 1], vậy tại sao lại không ghép nó vào nhóm số nguyên tố chẳng tiện lợi hơn hay sao, vì lúc bấy giờ các số tự nhiên chỉ cần chia thành hai nhóm số là đủ?

Để giải đáp câu hỏi này, ta cần bắt đầu bàn về số nguyên tố. Ví dụ ta cần xem xét số 3003 có thể chia hết cho những số nào? Muốn trả lời câu hỏi này ta cần phải xét tính chia của 3003 cho tất cả các số từ 1 cho đến 3003 và việc làm đó cũng tốn khá nhiều công sức.

Chúng ta biết rằng mọi số tự nhiên đều có thể biểu diễn thành tích số của nhiều số nguyên tố. Hiển nhiên là mọi số tự nhiên đều có thể phân tích thành một tích số của nhiều số nguyên tố và hơn thế nữa phải là cách duy nhất. Ta hãy lấy số 3003 làm ví dụ, ta có thể thấy: 3003 = 3 x 7 x 11 x 13.

Bây giờ ta xét vì sao không thể xem số 1 là số nguyên tố? Nếu xem “1” là số nguyên tố thì khi phân tích một số phức hợp thành tích của nhiều số nguyên tố, lúc bấy giờ sẽ không có một lời giải duy nhất nữa. Ví như với số 3003 ta có thể viết thành: 3003 = 3 x 7 x 11 x 13 3003 = 1 x 3 x 7 x 11 x 13 3003 = 1 x 1 x 3 x 7 x 11 x 13 nghĩa là ta có thể thêm tích số tuỳ ý số con số 1 và như vậy việc biểu diễn 3003 thành tích của các số nguyên tố đã không phải là duy nhất và trở thành có thể phân tích một số thành tích của các số nguyên tố theo nhiều cách và đó sẽ là một phiền phức lớn, vì vậy không thể xem 1 là một số nguyên tố.

Nguồn : 10 vạn câu hỏi vì sao về toán học - Dịch giả: Nguyễn Văn Mậu -Nhà xuất bản Giáo dục Việt Nam
Nguồn : 10 vạn câu hỏi vì sao về toán học - Dịch giả: Nguyễn Văn Mậu -Nhà xuất bản Giáo dục Việt Nam

Có phải số các số nguyên tố là hữu hạn?


Trong các số tự nhiên thì 2, 3, 5, 7...chỉ có thể chia hết cho số 1 và bản thân số đó, đó là các số nguyên tố. Các số 4, 6, 8, 9... thì ngoài số 1, các số này còn có thể chia hết cho nhiều số khác, các số này thuộc loại các hợp số. Số 1 không phải là số nguyên tố cũng không phải thuộc loại hợp số. Thế trong các số tự nhiên, những số nào là số nguyên tố? Hơn 300 năm trước Công nguyên, một học giả cổ Hy lạp Erathos Thenes đã đưa ra một phương pháp. Ông viết dãy các số tự nhiên lên một trang giấy rồi dán lên một cái khung, sau đó lần lượt khoét hết các hợp số trong đó và thu được một vật giống như cái rây, các lỗ rây chính là chỗ các hợp số đã bỏ đi. Người ta gọi trang giấy này là chiếc “sàng Eratosthenes” nổi tiếng.

Bằng cách này, Eratosthenes đã thu được các số nguyên tố trong dãy số 50 số nguyên đầu tiên. Ông viết các số từ 1 đến 50, trước hết đục bỏ số 1, giữ lại số 2. Sau đó đục bỏ các số là bội số của 2, để lại số 3. Sau đó đục bỏ số là bội số của 3, để lại số 5. Sau đó loại bỏ các bội số của 5...Nhờ cách này người ta thu nhận được các số nguyên tố trong 50 số nguyên đầu tiên.

Theo phương pháp này, ta viết các con số từ 1 - 100 rồi sàng ra các số nguyên tố trong các số tự nhiên từ 1 - 100. Nhưng theo cách của Eratosthenes, liệu có tìm được số nguyên tố cuối cùng hay không? Và liệu các số nguyên tố có phải là hữu hạn hay không? Vào năm 275 năm trước Công nguyên, nhà toán học Hy Lạp kiệt xuất Ơclit [Euclide] đã dùng một phương pháp kì diệu để chứng minh các số nguyên tố là vô hạn.

Ơclit đã dùng phương pháp phản chứng để chứng minh luận đề vừa nêu. Trước hết ông giả thiết số các số nguyên tố là hữu hạn thì toàn bộ các số nguyên tố sẽ là 2, 3, 5, 7...p, trong đó p là số nguyên tố lớn nhất. Sau đó ta lập số A = 2. 3. 5. 7...p + 1.

Vậy chỉ có thể hoặc A chia hết cho các số nguyên tố hoặc bản thân nó là một số nguyên tố. Vì theo cách thành lập thì A không chia hết cho bất kì số nguyên tố nào từ 2, 3,...p vì số A chia cho các số bất kì 2, 3, 5...p thì đều có số dư là 1 tức là A không chia hết cho bất kì số nào trong các số 2,3, 5...p, điều đó có nghĩa là nó sẽ chia hết cho một số nguyên tố khác lớn hơn p và trái với giả thiết đặt ra. Vậy số các số nguyên tố là vô hạn.

Đây là một định lí quan trọng trong lí thuyết số. Lí thuyết số hay còn gọi là số luận là ngành toán học quan trọng, chủ yếu nghiên cứu các tính chất của số, trong đó có nhiều dự đoán, nhiều vấn đề hết sức lí thú, có nhiều vấn đề cho đến nay vẫn còn chưa được giải quyết. Giả thuyết Goldbach là một trong các số đó.

Nguồn : 10 vạn câu hỏi vì sao về toán học - Dịch giả: Nguyễn Văn Mậu -Nhà xuất bản Giáo dục Việt Nam

Liệu có thể có công thức tính số nguyên tố? Ta đã biết số nguyên tố chỉ có thể chia hết cho số 1 và chính số đó. Chúng ta còn biết là có thể nhận biết số nguyên tố qua “sàng Eratosthenes”. Thế liệu có thể biểu diễn số nguyên tố bằng một biểu thức nào đó không hoặc liệu có công thức tuy không biểu diễn được hết các số nguyên tố, nhưng các số tính theo công thức đó đều là số nguyên tố? Nhà toán học Pháp nổi tiếng Fecma đã đưa ra công thức dự đoán cách tính một số nguyên tố. Ông đã tìm thấy số:

F

=22n + 1

trong đó khi n = 0, 1, 2, 3, 4 thì F tính được là một số nguyên tố.

Nhưng về sau, nhà toán học Thuỵ sĩ Ơle đã chỉ ra rằng với n = 5 thì số F[5] =225 + 1 = 4294967297 = 641 x 6700417 là một hợp số vì vậy dự đoán Fecma bị bác bỏ. Từ đó lại có nhiều người tiếp tục đưa ra nhiều công thức qua đó có thể tính ra các số nguyên tố một cách tổng quát. Trong lịch sử toán học, đã từng có nhiều công thức đề nghị tính số nguyên tố như:

f = n2 + n + 17


f = n2 - n + 41
f = n2 - n + 72491
f = n2 - 79n + 1601 Nhưng đáng tiếc là các công thức đưa ra dần dần đều bị bác bỏ. Năm 1983 một người Trung Quốc đưa ra một dự đoán khác. Nếu cho p là một số lẻ thì có thể tính số nguyên tố theo p bằng công thức:

f[p] =1/3 [2p + 1]

Nhưng người ta đã tìm thấy với p = 29 thì dự đoán bị bác bỏ.

Trong thời gian đó ở các nước khác cũng có người đưa ra công thức tính số nguyên tố phụ thuộc hai tham số m và n:

f[m,n] = n-1/2{[m[n+1] - [n! + 1]]2 - [m[n+1]-[n!+1]]2 + 1}+2.

Trong đó m, n là các số tự nhiên n! = 1.2.3...n đọc là n giai thừa. Người ta đã kiểm chứng được f[1,2] = 3

f[3,4] = 2

f[5,4] = 5 f[103,6] = 7 là các số nguyên tố. Công thức đã được chứng minh bằng lí thuyết nhờ đó có thể biểu diễn được các số nguyên tố bằng công thức nhưng công thức quá phức tạp và ít có giá trị thực tiễn.

Nguồn : 10 vạn câu hỏi vì sao về toán học - Dịch giả: Nguyễn Văn Mậu -Nhà xuất bản Giáo dục Việt Nam

Vì sao trong ba số lẻ liên tiếp nhất định có hai số nguyên tố cùng nhau? Với hai số nguyên bất kì nếu chúng không có ước số chung nào khác ngoài số 1, người ta gọi chúng là các số nguyên tố cùng nhau. Nếu trong ba số có hai số bất kì nguyên tố cùng nhau thì người ta gọi chúng là các số nguyên tố cùng nhau song song hay các số nguyên tố cùng nhau từng đôi một. Tại sao với 3 số lẻ liên tiếp bất kì nhất định có hai số nguyên tố cùng nhau? Chúng ta đã biết số lẻ là số không chia hết cho 2 vì vậy với số lẻ ta chỉ có ước số là các số lẻ. Ví dụ số 15 chỉ có các ước số 1, 3, 5, 15 là các số lẻ.

Nếu hai số cùng là bội số của một số p thì hiệu của chúng cũng là bội số của p.

Ví dụ 100 và 15 đều là bội số của 5 thì hiệu số của hai số là 85 cũng là bội số của 5. Từ các lí luận trên đây chúng ta có thể giải đáp câu hỏi “vì sao” đã đề ra.

Giả sử ta có 3 số lẻ liên tiếp, ta chọn một số là a thì số lớn sẽ là b = a + 2 hoặc b = a + 4. Nếu avà b có ước số chung là p thì p phải là ước số của hiệu số b - a, có nghĩa là p phải là ước số của 2 hoặc 4. Vì p = 1 nên a và b chỉ có ước số chung là 1. Từ đó nếu a, b là số lẻ thì ước số chung của chúng chỉ là 1. Vì a và b là các số lẻ nên chúng không có ước số chung là số chẵn. Chúng ta đã chứng minh a và b chỉ có ước số chung là 1 nên a và b phải là các số nguyên tố cùng nhau. Với ba số lẻ liên tiếp bất kì luôn có hai số nguyên tố cùng nhau.

Nguồn : 10 vạn câu hỏi vì sao về toán học - Dịch giả: Nguyễn Văn Mậu -Nhà xuất bản Giáo dục Việt Nam

Vì sao hai số hơn nhau không quá 2n lần trong 2n + 1 số tự nhiên khác nhau nhất định có hai số nguyên tố cùng nhau?

Câu trả lời đơn giản nhất là trong n + 1 số tự nhiên lớn hơn nhau không quá 2n lần nhất định sẽ có hai số cạnh nhau, hai số cạnh nhau tất nhiên phải là các số nguyên tố cùng nhau. Hai số cạnh nhau nếu có ước số chung là p thì p nhất định phải bằng 1. Thế tại sao trong n + 1 số tự nhiên không lớn hơn nhau quá 2n lần nhất định phải có hai số cạnh nhau? Theo điều kiện đặt ra trong tập hợp từ các số tự nhiên số các số nguyên tố phải nhỏ hơn hoặc cùng lắm là bằng 2n. Vả lại trong tập hợp không có các số cạnh nhau thì số các số nguyên tố tối đa chỉ là n. Ví dụ các tập hợp không có các số cạnh nhau là các tập hợp: {1, 3, 5,...2n - 1} hoặc {2, 4, 6,...2n}. Nếu ta lại thêm vào các tập hợp trên một số nào đó theo thứ tự các số tự nhiên thì tất nhiên phải là số cạnh nhau của n + 1 số trong mỗi tập hợp và tập hợp mới sẽ là tập hợp có các số cạnh nhau. Người chứng minh luận đề này là nhà toán học Hungari Potard lúc ông mới 12 tuổi.

Nguồn : 10 vạn câu hỏi vì sao về toán học - Dịch giả: Nguyễn Văn Mậu -Nhà xuất bản Giáo dục Việt Nam

Video liên quan

Chủ Đề