Metachromatic leukodystrophy là gì

Rare Disease Database

0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Print

Metachromatic Leukodystrophy

NORD gratefully acknowledges Jocelyn Rosenzweig, NORD Editorial Intern from the University of Connecticut, and Laura Adang MD, PhD, Division of Child Neurology, Children's Hospital of Philadelphia, for assistance in the preparation of this report.

Synonyms of Metachromatic Leukodystrophy

  • MLD
  • diffuse brain sclerosis
  • metachromatic leukoencephalopathy
  • ARSA deficiency
  • arylsulfatase A deficiency

General Discussion

Summary

Metachromatic leukodystrophy [MLD] is a rare hereditary disease characterized by accumulation of fats called sulfatides. This causes the destruction of the protective fatty layer [myelin sheath] surrounding the nerves in both the central nervous system and the peripheral nervous system. There are three types of MLD based on the age symptoms appear: late-infantile MLD, juvenile MLD, and adult MLD. All subtypes ultimately affect both intellectual and motor function. Symptoms vary by type but can include difficulty talking, seizures, difficulty walking, personality changes, and behavior and personality changes. MLD is caused by changes [mutations] in the ASA gene [also known as ARSA] and, in rare cases, the PSAP gene.

Introduction

This condition is called metachromatic leukodystrophy because when viewed under a microscope, sulfatide accumulation in cells appears as granules that are colored differently than other cellular material [metachromatic]. A leukodystrophy is a genetic disorder that disrupts myelination in the brain.

NORD Video: Metachromatic Leukodystrophy

Scroll back up to restore default view.

Signs & Symptoms

Each MLD subtype has specific symptoms and rate of progression. Each subtype is based on age of onset.

Over half of the children affected by MLD show symptoms in the first 3 years of life. This form is called late-infantile MLD. Often the first signs of disease are from demyelination of the peripheral nervous system and include difficulty walking.

Juvenile MLD [J-MLD] is less common and occurs in 20-30% of people with MLD. Onset is between 4 years old and sexual maturity, usually between 12 and 14 years of age. Often with J-MLD, the first signs include behavioral problems or new difficulty in school.

All forms of MLD are progressive. In late-infantile MLD, within months of the first symptoms, most children lose the ability to talk and walk. The progression in the juvenile and adult forms can occur over years to decades. Regardless of the subtype, last stage of the disease is often characterized by blindness, inability to move, unresponsiveness, and an inability to speak.

NORD Program

Causes

MLD is an autosomal recessive genetic disorder. Recessive genetic disorders occur when both copies of the gene are affected. If a child is affected, most of the time, their parents are carriers, meaning each parent will have one changed [mutated] copy and one normal copy of the ASA gene, but will not have symptoms. The risk for two carrier parents to both pass the altered gene and have an affected child is 25%. The risk to have a child who is a carrier like the parents is 50% with each pregnancy. The chance for a child to receive normal genes from both parents is 25%. The risk is the same for males and females. The ASA gene encodes the protein Arylsulfatase A. There is some association with specific mutations and the subtype of MLD [genotype-phenotype correlation].Rarely, children with MLD have working copies of the ASA gene, but abnormalities in PSAP gene, which encodes several saposin proteins, including saposin B, an activator of ASA.

Abnormalities in these proteins result in the inability of the body to breakdown fats [lipids] that contain sulfate [sulfatides]. Accumulation of sulfatides then occurs in the nervous system, kidneys, testes, and brain, and interferes with the production of myelin, the substance that insulates and protects the nerves. When the sulfatides build up within the nervous system, the myelin breaks down and nerves connecting the brain and spinal cord do not function properly. This leads to problems with brain function that results in the mental and physical problems present in those who have MLD. The symptoms vary depending on which parts of the brain are affected.

Affected Populations

The true prevalence rate of MLD is unknown, but is estimated to be between 1 in 40,000 and 1 in 160,000. The Navajo also have a higher prevalence rate of 1 in every 2,500 people. In certain populations in the Middle East, these numbers may be even higher.

Related Disorders

There are multiple related disorders that have been identified with similar causes or symptoms, including other leukodystrophies, which can have a similar initial presentation in early childhood.

Arylsulfatase A pseudodeficiency involves low ARSA enzyme activity [less than 15% of normal], but no symptoms.

Multiple sulfatase deficiency is caused by the loss [partial or complete] of all sulfatases, including ARSA. Children affected by MSD will have low enzymatic activity of multiple sulfatases, not just ARSA. For more information on this disorder, choose multiple sulfatase deficiency as your search term in the Rare Disease Database.

Acquired conditions, such as inflammatory demyelinating polyneuropathy, can look similar on initial electrophysiological testing. MLD should be considered in the differential in young children diagnosed with chronic inflammatory demyelinating polyneuropathy [CIDP] or GuillainBarré syndrome [GBS]. These diagnoses can be easily distinguished with sulfatase testing.

Diagnosis

MLD is first suspected by recognizing the characteristic pattern of progressive impairment. In the late-infantile form, the first signs are often difficult walking, which can present as new inability to fully lift the feet while walking [foot drop] or by toe walking. For adult MLD, the first signs are slurred speech and behavioral issues that include difficulty in school, behavior changes, and decreased ability in school. Individuals with juvenile MLD can present with motor or cognitive symptoms.

Clinical Testing and Work-Up
The diagnosis of MLD is made through both genetic and biochemical testing. Genetic testing can identify mutations in the ASA and PSAP genes. Biochemical testing includes sulfatase enzyme activity and urinary sulfatide excretion.

An MRI can confirm a diagnosis of MLD. An MRI shows imaging of a persons brain and can show the presence and absence of myelin. There is a classic pattern of myelin loss in the brains of individuals affected by MLD. As the disease progresses, imaging shows accumulating injury to the brain. Of note, in young children, the initial brain imaging can be normal.

Standard Therapies

Treatment
In pre- or minimally symptomatic children, stem cell transplantation can be considered. Otherwise, the main treatment is supportive and focused on symptomatic relief.

Investigational Therapies

Information on current clinical trials is posted on the Internet at www.clinicaltrials.gov . All studies receiving U.S. government funding, and some supported by private industry, are posted on this government web site.

For information about clinical trials being conducted at the NIH Clinical Center in Bethesda, MD, contact the NIH Patient Recruitment Office:
Toll-free: [800] 411-1222
TTY: [866] 411-1010
Email: [emailprotected]

Some current clinical trials also are posted on the following page on the NORD website:
//rarediseases.org/for-patients-and-families/information-resources/news-patient-recruitment/

For information about clinical trials sponsored by private sources, in the main, contact:
www.centerwatch.com

For information about clinical trials conducted in Europe, contact:
//www.clinicaltrialsregister.eu/

NORD Member Organizations

  • MLD Foundation
    • 21345 Miles Drive
    • West Linn, OR 97068
    • Email: [emailprotected]
    • Website: //www.mldfoundation.org/
  • National Tay-Sachs and Allied Diseases Association, Inc.
    • 2001 Beacon Street
    • Suite 204
    • Boston, MA 02135 USA
    • Phone: [617] 277-4463
    • Toll-free: [800] 906-8723
    • Email: [emailprotected]
    • Website: //www.NTSAD.org
  • The Calliope Joy Foundation
    • 420 Conshohocken State Road
    • Bala Cynwyd, PA 19004
    • Email: [emailprotected]
    • Website: //www.thecalliopejoyfoundation.org/
  • United Leukodystrophy Foundation
    • 224 N. 2nd St.
    • Suite 2
    • DeKalb, IL 60115
    • Phone: [815] 748-3211
    • Toll-free: [800] 728-5483
    • Email: [emailprotected]
    • Website: //www.ulf.org/

Other Organizations

  • Chloes Fight Rare Disease Foundation
    • 343 Sweet Briar Lane
    • Hopkins, MN 55343 USA
    • Email: [emailprotected]
    • Website: //chloesfight.org/
  • European Leukodystrophy Association
    • P O Box 8126
    • CS 61024
    • Laxou Cedex, 54521 France
    • Phone: 33383309334
    • Email: [emailprotected]
    • Website: //ela-asso.com/
  • Genetic and Rare Diseases [GARD] Information Center
    • PO Box 8126
    • Gaithersburg, MD 20898-8126
    • Phone: [301] 251-4925
    • Toll-free: [888] 205-2311
    • Website: //rarediseases.info.nih.gov/GARD/
  • Hunters Hope Foundation, Inc.
    • 21 Princeton Place
    • Suite 12
    • Orchard Park, NY 14127
    • Phone: [716] 667-1200
    • Toll-free: [877] 984-4673
    • Email: [emailprotected]
    • Website: //www.huntershope.org
  • Leukodystrophy Australia
    • Nerve Centre Building
    • 54 Railway Road
    • BLACKBURN, VIC 3130 Australia
    • Phone: 61398452831
    • Toll-free: [180] 014-1400
    • Email: [emailprotected]
    • Website: //www.alds.org.au
  • NIH/National Institute of Neurological Disorders and Stroke
    • P.O. Box 5801
    • Bethesda, MD 20824
    • Phone: [301] 496-5751
    • Toll-free: [800] 352-9424
    • Website: //www.ninds.nih.gov/

References

TEXTBOOKS
Rosser T, Pearl PL. Metachromatic Leukodystrophy. In: NORD Guide to Rare Disorders. Lippincott, Williams & Wilkins. Philadelphia, PA. 2003.

JOURNAL ARTICLES
Cesani M, Lorioli L, Grossi S, Amico G, Fumagalli F, Spiga I, Filocamo M, Biffi A. Mutation Update of ARSA and PSAP Genes Causing Metachromatic Leukodystrophy. Hum Mutat. 2016 Jan;37[1]:16-27. //www.ncbi.nlm.nih.gov/pubmed/26462614

Wang RY, Bodamer OA, Watson MS, Wilcox WR, ACMG Work Group on Diagnostic Confirmation of Lysosomal Storage Diseases. Lysosomal storage diseases: diagnostic confirmation and management of presymptomatic individuals. Genet Med. 2011 May;13[5]:457-84. //www.ncbi.nlm.nih.gov/pubmed/21502868

Cesani M, Capotondo A, Plati T, Sergi LS, Fumagalli F, Roncarolo MG, Naldini L, Comi G, Sessa M, Biffi A. Characterization of new arylsulfatase A gene mutations reinforces genotype-phenotype correlation in metachromatic leukodystrophy. Hum Mutat. 2009 Oct;30[10]:E936-45. //www.ncbi.nlm.nih.gov/pubmed/19606494

INTERNET
Gomez-Ospina N. Arylsulfatase A Deficiency. 2006 May 30 [Updated 2017 Dec 14]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle [WA]: University of Washington, Seattle; 1993-2019. Available from: //www.ncbi.nlm.nih.gov/books/NBK1130/ Accessed March 4, 2019.

Metachromatic leukodystrophy. Genetics Home Reference. Reviewed February 2013. //ghr.nlm.nih.gov/condition/metachromatic-leukodystrophy Accessed March 4, 2019.

Years Published

1986, 1987, 1988, 1994, 1995, 1997, 2003, 2019

The information in NORDs Rare Disease Database is for educational purposes only and is not intended to replace the advice of a physician or other qualified medical professional.

The content of the website and databases of the National Organization for Rare Disorders [NORD] is copyrighted and may not be reproduced, copied, downloaded or disseminated, in any way, for any commercial or public purpose, without prior written authorization and approval from NORD. Individuals may print one hard copy of an individual disease for personal use, provided that content is unmodified and includes NORDs copyright.

National Organization for Rare Disorders [NORD]
55 Kenosia Ave., Danbury CT 06810 [203]744-0100

Report Index

Synonyms

General Discussion

Signs & Symptoms

Causes

Affected Populations

Related Disorders

Standard Therapies

Investigational Therapies

Supporting Organizations

References

Related Content

NORD Patient Assistance

NORD strives to open new assistance programs as funding allows. If we don't have a program for you now, please continue to check back with us.

Learn More >
NORD Video: Rare Disease Facts
Donate to NORD
NORD Program

Video liên quan

Chủ Đề