Phương trình đường thẳng các dạng bài tập năm 2024

Tài liệu gồm 31 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tuyển chọn 64 bài tập vận dụng – vận dụng cao chuyên đề phương trình đường thẳng trong chương trình Toán 10: Phương Pháp Tọa Độ Trong Mặt Phẳng Oxy, có đáp án và lời giải chi tiết; tài liệu phù hợp với các em học sinh lớp 10 học lực khá – giỏi, muốn chinh phục mức điểm 8 – 9 – 10.

Trích dẫn Bài tập vận dụng – vận dụng cao chuyên đề phương trình đường thẳng: + Cho điểm. Hãy lập phương trình của đường thẳng đi qua điểm và chắn trên hai trục tọa độ hai đoạn thằng có độ dài bằng nhau. Viết phương trình đường thẳng đi qua điểm và cách đều hai điểm. + Đường thẳng cắt các trục tọa độ và lần lượt tại các điểm và. Gọi là điểm chia đoạn theo tỉ số. Viết phương trình đường thẳng đi qua và vuông góc với. + Cho đường thẳng và điểm. Viết phương trình đường thẳng đi qua điểm cắt và lần lượt tại và sao cho là trung điểm của đoạn.

  • Phương Pháp Tọa Độ Trong Mặt Phẳng

Ghi chú: Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về: Facebook: TOÁN MATH Email: [email protected]

BÀI VIẾT LIÊN QUAN

Trong chương trình Hình học 12, bài toán viết phương trình đường thẳng trong không gian là bài toán hay và không quá khó. Để làm tốt bài toán này đòi hỏi học sinh phải nắm vững kiến thức hình học không gian, mối quan hệ giữa đường thẳng, mặt phẳng và mặt cầu. Là dạng toán chiếm tỷ lệ nhiều trong các đề thi tốt nghiệp THPT và thi vào Cao đẳng, Đại học nên yêu cầu học sinh phải làm tốt được dạng toán này là hết sức cần thiết.

Trong quá trình giảng dạy, tôi nhận thấy các em còn lúng túng nhiều trong quá trình giải các bài toán về viết phương trình đường thẳng. Nhằm giúp các em giảm bớt khó khăn khi gặp dạng toán này tôi đã mạnh dạn đưa ra chuyên đề : “Phân loại các dạng bài tập viết về phương trình đường thẳng trong không gian”. Trong chuyên đề, tôi đã đưa ra phân loại bài tập viết phương trình đường thẳng từ dễ đến khó để học sinh tiếp cận một cách đơn giản, dễ nhớ và từng bước giúp học sinh hình thành tư duy tự học, tự giải quyết vấn đề. Ngoài ra, giúp cho các em làm tốt các bài thi tốt nghiệp cũng như thi vào các trường Cao đẳng và Đại học.

Bài tập phương trình đường thẳng trong không gian là phần kiến thức quan trọng nằm trong chương trình toán hình lớp 12 và thường xuyên xuất hiện trong đề thi THPT Quốc Gia. Bài viết dưới đây của VUIHOC sẽ giúp các em ôn tập kiến thức và các dạng bài tập kèm hướng dẫn giải chi tiết.

1. Lý thuyết phương trình đường thẳng trong không gian

1.1. Phương trình tham số của đường thẳng trong không gian

Đường thẳng d đi qua $M_{0}(x_{0}; y_{0}; z_{0})$ và vectơ chỉ phương $\overrightarrow{u}=(a; b; c)$

Phương trình tham số d:

$x = x_{0} + at$

$y = y_{0} + bt$

$z = z_{0} + ct$

$(t \epsilon R)$

1.2. Phương trình chính tắc của đường thẳng trong không gian

Đường thẳng d đi qua $M_{0}(x_{0};y_{0};z_{0})$ và vectơ chỉ phương $\overrightarrow{u} = (a; b; c)$

Phương trình chính tắc của d: $\frac{x - x_{0}}{a} = \frac{y - y_{0}}{b} = \frac{z - z_{0}}{c} (abc \neq 0)$

1.3. Vị trí tương đối của 2 đường thẳng

Trong không gian cho 2 đường thẳng 1 đi qua $M_{1}$ và có một vecto chỉ phương $\overrightarrow{u}$. Khi đó vị trí tương đối $\Delta_{1}$ và $\Delta_{2}$ được xác định như sau:

Phương trình đường thẳng các dạng bài tập năm 2024

1.4. Vị trí tương đối của đường thẳng với mặt phẳng

Đường thẳng d đi qua $M_{0}(x_{0};y_{0};z_{0})$ và có vectơ chỉ phương $\overrightarrow{u} = (a; b; c)$ và mặt phẳng (P): $Ax + By + Cz + D = 0$ có vecto pháp tuyến $\overrightarrow{u} = (A; B; C)$. Khi đó:

Phương trình đường thẳng các dạng bài tập năm 2024

1.5. Góc giữa 2 đường thẳng

Trong không gian cho 2 đường thẳng $\Delta_{1}$ có một vecto chỉ phương $\overrightarrow{u_{1}} = (a_{1}; b_{1}; c_{1})$ khi đó:

Phương trình đường thẳng các dạng bài tập năm 2024

\>> Xem thêm: Góc giữa 2 mặt phẳng: Định nghĩa, cách xác định và bài tập

1.6. Góc giữa đường thẳng và mặt phẳng

Trong không gian cho đường thẳng $\Delta$ có vecto chỉ phương $\overrightarrow{u_{1}} = (a; b; c)$ mặt phẳng (P) có vecto chỉ phương $\overrightarrow{n} = (A; B; C)$. Khi đó:

Phương trình đường thẳng các dạng bài tập năm 2024

\>> Xem thêm: Cách xác định góc giữa đường thẳng và mặt phẳng trong không gian

PAS VUIHOC – GIẢI PHÁP ÔN LUYỆN CÁ NHÂN HÓA

Khóa học online ĐẦU TIÊN VÀ DUY NHẤT:

⭐ Xây dựng lộ trình học từ mất gốc đến 27+

⭐ Chọn thầy cô, lớp, môn học theo sở thích

⭐ Tương tác trực tiếp hai chiều cùng thầy cô

⭐ Học đi học lại đến khi nào hiểu bài thì thôi

⭐ Rèn tips tricks giúp tăng tốc thời gian làm đề

⭐ Tặng full bộ tài liệu độc quyền trong quá trình học tập

Đăng ký học thử miễn phí ngay!!

Phương trình đường thẳng các dạng bài tập năm 2024

1.7. Khoảng cách từ 1 điểm tới 1 đường thẳng

Cho điểm M cùng đường thẳng $\Delta$ đi qua N có vectơ $\overrightarrow{u}$. Khi đó khoảng cách từ điểm M đến $\Delta$ xác định bởi công thức.

Phương trình đường thẳng các dạng bài tập năm 2024

1.8. Khoảng cách giữa 2 đường thẳng chéo nhau

Cách 1:

Trong không gian cho đường thẳng $\Delta_{1}$ đi qua $M_{1}$ có vecto chỉ phương $\overrightarrow{u_{1}} . \Delta_{2}$ đi qua $M_{2}$ có vecto chỉ phương $\overrightarrow{u_{2}}$. Khi đó:

Phương trình đường thẳng các dạng bài tập năm 2024

Cách 2:

Gọi AB là đoạn thẳng vuông góc $\Delta_{1}, \Delta_{2}$ với $A \epsilon \Delta_{1}, B \epsilon \Delta_{2}$

$\Rightarrow \overrightarrow{AB} \, . \, \overrightarrow{u_{1}} = 0$ hoặc $\Rightarrow \overrightarrow{AB} \, . \, \overrightarrow{u_{2}} = 0$

$\Rightarrow d(\Delta_{1}, \Delta_{2})=AB$

2. Các dạng bài tập về viết phương trình đường thẳng trong không gian và cách giải

2.1. Dạng 1: Viết phương trình đường thẳng bằng cách xác định vectơ chỉ phương

Ví dụ 1: Với tọa độ Oxyz trong không gian cho đường thẳng

d: $\frac{x + 1}{2}=\frac{y - 1}{1}=\frac{z - 2}{3}$ và mặt phẳng P: $x-y-z-1=0$. Viết phương trình đường thẳng $\Delta$ vuông góc với d, song song với (P) và đi qua A(1; 1; -2).

Giải:

Để tìm được vectơ chỉ phương của $\Delta$ ta phải tìm 2 vectơ chỉ phương không cùng phương của nó sau đó tìm tích có hướng của 2 vecto.

Như vậy ta có: $\overrightarrow{u_{\Delta}}=[\overrightarrow{u_{d}}; \overrightarrow{_{p}}]=(2; 5; -3)$

Trong đó: $\overrightarrow{u_{d}} = (2; 1; 3); \overrightarrow{_{p}}=(1; -1; -1)$

$\Delta$ đi qua A(1; 1; -2) và có vectơ chỉ phương $\overrightarrow{u_{\Delta}} = (2; 5; -3)$

$\Rightarrow$ Ta có phương trình: $\Delta : \frac{x - 1}{2} = \frac{y - 1}{5} = \frac{z + 2}{-3}$

Ví dụ 2: Cho tọa độ Oxyz trong không gian cho đường thẳng

$\Delta: \frac{x - 1}{2} = \frac{y + 1}{1} = \frac{z}{-1}$ và mặt phẳng P: $x-y-z-1=0$. Viết phương trình đường thẳng d vuông góc và cắt với $\Delta$, qua M(2; 1; 0).

Giải:

Phương trình đường thẳng các dạng bài tập năm 2024

2.2. Dạng 2: Viết phương trình đường thẳng liên quan đến một đường thẳng khác

Ví dụ 1: Cho tọa độ Oxyz trong không gian cho đường thẳng

$d: \frac{x + 1}{3}=\frac{y - 2}{-2}=\frac{z - 2}{2}$ và $P: x + 3y + 2z + 2=0$. Viết phương trình của $\Delta$ song song với (P), cắt đường thẳng (d) và đi qua M(2; 2; 4).

Giải:

Phương trình đường thẳng các dạng bài tập năm 2024

Ví dụ 2: Cho hệ tọa độ Oxyz trong không gian có đường thẳng $d: \frac{x - 1}{2}=\frac{y + 1}{1}=\frac{z}{-1}$. Viết phương trình đường thẳng $\Delta$ đi qua A(2; 3; -1) và cắt d tại B sao cho khoảng cách từ B đến $\alpha: x + y + z = 0$ bằng $2\sqrt{3}$.

Giải:

Do $B \epsilon d \Rightarrow$ Tọa độ B(1 + t; 2 + 2t; -t)

Do khoảng cách từ B tới $\alpha: x + y + z = 0$ bằng $2\sqrt{3}$ nên:

Phương trình đường thẳng các dạng bài tập năm 2024

  • Với t = 2 thì B(3; 6; -2)

$\Delta$ đi qua B(3; 6; -2) và nhận $\overrightarrow{AB} (1; 3; -1)$ làm vecto chỉ phương:

$\Rightarrow$ Phương trình $\Delta: \frac{x - 3}{1}=\frac{y - 6}{3}=\frac{z - 2}{-1}$

  • Với t = -4 thì B(-3; -6; 4)

$\Delta$ đi qua B(-3; -6; 4) và nhận $\overrightarrow{AB}(-5; -9; 5)$ làm vecto chỉ phương:

$\Rightarrow$ Phương trình $\Delta: \frac{x + 3}{-5}=\frac{y + 6}{9}=\frac{z - 4}{5}$

2.3. Dạng 3: Viết phương trình đường thẳng liên quan đến hai đường thẳng khác

Ví dụ 1: Cho hệ tọa độ Oxyz trong không gian, viết phương trình của đường thẳng d đi qua điểm M(-4; -5; 3) và cắt cả 2 đường thẳng $d_{1}: 2x + 3x + 11 = 0$ hoặc $y - 2z + 7 = 0$ và $d_{2}: \frac{x - 2}{2}=\frac{y + 1}{3}=\frac{z - 1}{-5}$

Giải:

Viết phương trình đường thẳng:

Phương trình đường thẳng các dạng bài tập năm 2024

Phương trình đường thẳng các dạng bài tập năm 2024

Ví dụ 2: Cho hệ tọa độ Oxyz trong không gian với 3 đường thẳng có phương trình:

Phương trình đường thẳng các dạng bài tập năm 2024

Viết phương trình đường thẳng $\Delta$ biết $\Delta$ cắt $d_{1}; d_{2}; d_{3}$ lần lượt tại A, B, C để AB = BC.

Giải:

Xét 3 điểm A, B, C lần lượt nằm trên $d_{1}; d_{2}; d_{3}$

Giả sử: A(t; 4 - t; -1 + 2t); B(u; 3 - 3u, -3u) và C(-1 + 5v, 1 + 2v, -1 + v)

Ta có A, B, C thẳng hàng và BC = AB ⇔ B chính là trung điểm của BC

Phương trình đường thẳng các dạng bài tập năm 2024

Tọa độ 3 điểm A(1; 3; 1); B(0; 2; 0); C(-1; 1; -1)

$\Delta$ đi qua B(0; 2; 0) và có $\overrightarrow{CB}(1; 1; 1)$

Tham khảo ngay bộ tài liệu tổng hợp trọn bộ kiến thức và phương pháp giải mọi dạng bài tập trong đề thi THPT Quốc gia môn Toán

Phương trình đường thẳng các dạng bài tập năm 2024

2.4. Dạng 4: Viết phương trình đường thẳng liên quan đến khoảng cách

Ví dụ 1: Cho tọa độ Oxyz trong không gian, đường thẳng $d: x = 2 + 4t; y = 3 = 2t$ và $z = -3 + t$. Mặt phẳng $(P): -x + y + 2z + 5 = 0$. Viết phương trình nằm trong mặt phẳng (P) song song và cách d một khoảng bằng $\sqrt{14}$.

Giải:

Phương trình đường thẳng các dạng bài tập năm 2024

Phương trình đường thẳng các dạng bài tập năm 2024

Ví dụ 2:

Phương trình đường thẳng các dạng bài tập năm 2024
Giải:

Phương trình đường thẳng các dạng bài tập năm 2024

Phương trình đường thẳng các dạng bài tập năm 2024

Đăng ký ngay để được các thầy cô tư vấn và xây dựng lộ trình ôn thi sớm hiệu quả và phù hợp nhất với bản thân

Phương trình đường thẳng các dạng bài tập năm 2024

Trên đây là toàn bộ kiến thức lý thuyết và bài tập về phương trình đường thẳng trong không gian. Hy vọng rằng qua bài viết này các em có thể tự tin khi làm bài tập phần này. Để học nhiều hơn kiến thức về toán học lớp 12, truy cập trang web Vuihoc.vn ngay nhé!