Gluconeogenesis La gì

Ý nghĩa của từ gluconeogenesis là gì:

gluconeogenesis nghĩa là gì? Dưới đây bạn tìm thấy một ý nghĩa cho từ gluconeogenesis Bạn cũng có thể thêm một định nghĩa gluconeogenesis mình


1

0

Gluconeogenesis La gì
  0
Gluconeogenesis La gì

Sự hình thành glucoza trong cơ thể động vật.



Kích thước chữ hiển thị

  • Mặc định
  • Lớn hơn

MB-07803 Là Gì?

MB07804 là một chất ức chế gluconeogenesis thế hệ thứ hai để điều trị bệnh tiểu đường loại 2. Nó được thiết kế để ngăn chặn quá trình trao đổi chất ở gan chịu trách nhiệm sản xuất glucose.

Chỉ Định Của MB-07803

Điều tra để sử dụng / điều trị trong bệnh đái tháo đường týp 2.

Dược Động Học

MB07804 là một chất ức chế chọn lọc của fructose-1, 6-bisphosphatase (FBPase), một enzyme điều hòa trong con đường chịu trách nhiệm sản xuất glucose ở gan, được gọi là con đường gluconeogenesis. Bằng cách ức chế đặc biệt con đường này, nên giảm sản xuất glucose gan và giảm lượng đường trong máu ở bệnh nhân tiểu đường, không phụ thuộc vào nồng độ insulin và trọng lượng cơ thể.

Mọi thông tin trên đây chỉ mang tính chất tham khảo. Việc sử dụng thuốc phải tuân theo hướng dẫn của bác sĩ chuyên môn.

1. Rizza R. A. (2010) Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: implications for therapy. Diabetes 59, 2697–2707 10.2337/db10-1032 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Moore M. C., Coate K. C., Winnick J. J., An Z., and Cherrington A. D. (2012) Regulation of hepatic glucose uptake and storage in vivo. Adv. Nutr. 3, 286–294 10.3945/an.112.002089 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Ekberg K., Landau B. R., Wajngot A., Chandramouli V., Efendic S., Brunengraber H., and Wahren J. (1999) Contributions by kidney and liver to glucose production in the postabsorptive state and after 60 h of fasting. Diabetes 48, 292–298 10.2337/diabetes.48.2.292 [PubMed] [CrossRef] [Google Scholar]

4. Ogurtsova K., da Rocha Fernandes J. D., Huang Y., Linnenkamp U., Guariguata L., Cho N. H., Cavan D., Shaw J. E., and Makaroff L. E. (2017) IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 128, 40–50 10.1016/j.diabres.2017.03.024 [PubMed] [CrossRef] [Google Scholar]

5. Gastaldelli A., Baldi S., Pettiti M., Toschi E., Camastra S., Natali A., Landau B. R., and Ferrannini E. (2000) Influence of obesity and type 2 diabetes on gluconeogenesis and glucose output in humans: a quantitative study. Diabetes 49, 1367–1373 10.2337/diabetes.49.8.1367 [PubMed] [CrossRef] [Google Scholar]

6. Petersen K. F., Price T., Cline G. W., Rothman D. L., and Shulman G. I. (1996) Contribution of net hepatic glycogenolysis to glucose production during the early postprandial period. Am. J. Physiol. 270, E186–E191 10.1152/ajpendo.1996.270.1.E186 [PubMed] [CrossRef] [Google Scholar]

7. Gastaldelli A., Toschi E., Pettiti M., Frascerra S., Quinones-Galvan A., Sironi A. M., Natali A., and Ferrannini E. (2001) Effect of physiological hyperinsulinemia on gluconeogenesis in nondiabetic subjects and in type 2 diabetic patients. Diabetes 50, 1807–1812 10.2337/diabetes.50.8.1807 [PubMed] [CrossRef] [Google Scholar]

8. Cade W. T. (2008) Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys. Ther. 88, 1322–1335 10.2522/ptj.20080008 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Fang M. (2018) Trends in the prevalence of diabetes among U.S. adults: 1999–2016. Am. J. Prev. Med. 55, 497–505 10.1016/j.amepre.2018.05.018 [PubMed] [CrossRef] [Google Scholar]

10. Flegal K. M., Kruszon-Moran D., Carroll M. D., Fryar C. D., and Ogden C. L. (2016) Trends in obesity among adults in the United States, 2005 to 2014. JAMA 315, 2284–2291 10.1001/jama.2016.6458 [PubMed] [CrossRef] [Google Scholar]

11. Andronescu C. I., Purcarea M. R., and Babes P. A. (2018) Nonalcoholic fatty liver disease: epidemiology, pathogenesis and therapeutic implications. J. Med. Life 11, 20–23 [PMC free article] [PubMed] [Google Scholar]

12. Bullard K. M., Cowie C. C., Lessem S. E., Saydah S. H., Menke A., Geiss L. S., Orchard T. J., Rolka D. B., and Imperatore G. (2018) Prevalence of diagnosed diabetes in adults by diabetes type—United States, 2016. MMWR Morb. Mortal. Wkly. Rep. 67, 359–361 10.15585/mmwr.mm6712a2 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Fletcher J. A., Deja S., Satapati S., Fu X., Burgess S. C., and Browning J. D. (2019) Impaired ketogenesis and increased acetyl-CoA oxidation promote hyperglycemia in human fatty liver. JCI Insight 4, 10.1172/jci.insight.127737 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Chakravarty K., Cassuto H., Reshef L., and Hanson R. W. (2005) Factors that control the tissue-specific transcription of the gene for phosphoenolpyruvate carboxykinase-C. Crit. Rev. Biochem. Mol. Biol. 40, 129–154 10.1080/10409230590935479 [PubMed] [CrossRef] [Google Scholar]

15. Barzilai N., and Rossetti L. (1993) Role of glucokinase and glucose-6-phosphatase in the acute and chronic regulation of hepatic glucose fluxes by insulin. J. Biol. Chem. 268, 25019–25025 [PubMed] [Google Scholar]

16. Petersen M. C., Vatner D. F., and Shulman G. I. (2017) Regulation of hepatic glucose metabolism in health and disease. Nat. Rev. Endocrinol. 13, 572–587 10.1038/nrendo.2017.80 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Fukumoto H., Seino S., Imura H., Seino Y., Eddy R. L., Fukushima Y., Byers M. G., Shows T. B., and Bell G. I. (1988) Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein. Proc. Natl. Acad. Sci. U. S. A. 85, 5434–5438 10.1073/pnas.85.15.5434 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. van Schaftingen E., and Gerin I. (2002) The glucose-6-phosphatase system. Biochem. J. 362, 513–532 10.1042/0264-6021:3620513 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Miller B. R., Nguyen H., Hu C. J.-H., Lin C., and Nguyen Q. T. (2014) New and emerging drugs and targets for type 2 diabetes: reviewing the evidence. Am. Health Drug Benefits 7, 452–463 [PMC free article] [PubMed] [Google Scholar]

20. Rines A. K., Sharabi K., Tavares C. D. J., and Puigserver P. (2016) Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nat. Rev. Drug Discov. 15, 786–804 10.1038/nrd.2016.151 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Goodacre R., Vaidyanathan S., Dunn W. B., Harrigan G. G., and Kell D. B. (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol. 22, 245–252 10.1016/j.tibtech.2004.03.007 [PubMed] [CrossRef] [Google Scholar]

22. Umpleby A. M. (2015) Hormone measurement guidelines: tracing lipid metabolism: the value of stable isotopes. J. Endocrinol. 226, G1–G10 10.1530/JOE-14-0610 [PubMed] [CrossRef] [Google Scholar]

23. Wishart D. S., Jewison T., Guo A. C., Wilson M., Knox C., Liu Y., Djoumbou Y., Mandal R., Aziat F., Dong E., Bouatra S., Sinelnikov I., Arndt D., Xia J., Liu P., et al. (2013) HMDB 3.0–the Human Metabolome Database in 2013. Nucleic Acids Res. 41, D801–D807 10.1093/nar/gks1065 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Zamboni N., Saghatelian A., and Patti G. J. (2015) Defining the metabolome: size, flux, and regulation. Mol. Cell 58, 699–706 10.1016/j.molcel.2015.04.021 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Dunn W. B., Erban A., Weber R. J. M., Creek D. J., Brown M., Breitling R., Hankemeier T., Goodacre R., Neumann S., Kopka J., and Viant M. R. (2013) Mass appeal: metabolite identification in mass spectrometry-focused untargeted. Metabolomics 9, 44–66 10.1007/s11306-012-0434-4 [CrossRef] [Google Scholar]

27. Leenders J., Frédérich M., and de Tullio P. (2015) Nuclear magnetic resonance: a key metabolomics platform in the drug discovery process. Drug Discov. Today Technol. 13, 39–46 10.1016/j.ddtec.2015.06.005 [PubMed] [CrossRef] [Google Scholar]

28. Shao Y., and Le W. (2019) Recent advances and perspectives of metabolomics-based investigations in Parkinson's disease. Mol. Neurodegener. 14, 3 10.1186/s13024-018-0304-2 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Wolfe R. R., Chinkes D. L., and Wolfe R. R. (2005) Isotope Tracers in Metabolic Research: Principles and Practice of Kinetic Analysis, 2nd Ed., Wiley-Liss, Hoboken, NJ [Google Scholar]

30. Dunn W. B., Broadhurst D., Begley P., Zelena E., Francis-McIntyre S., Anderson N., Brown M., Knowles J. D., Halsall A., Haselden J. N., Nicholls A. W., Wilson I. D., Kell D. B., and Goodacre R., and Human Serum Metabolome (HUSERMET) Consortium (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6, 1060–1083 10.1038/nprot.2011.335 [PubMed] [CrossRef] [Google Scholar]

31. Chung S. T., Chacko S. K., Sunehag A. L., and Haymond M. W. (2015) Measurements of gluconeogenesis and glycogenolysis: a methodological review. Diabetes 64, 3996–4010 10.2337/db15-0640 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Kim I.-Y., Suh S.-H., Lee I.-K., and Wolfe R. R. (2016) Applications of stable, nonradioactive isotope tracers in in vivo human metabolic research. Exp. Mol. Med. 48, e203 10.1038/emm.2015.97 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Chokkathukalam A., Jankevics A., Creek D. J., Achcar F., Barrett M. P., and Breitling R. (2013) mzMatch-ISO: an R tool for the annotation and relative quantification of isotope-labelled mass spectrometry data. Bioinformatics 29, 281–283 10.1093/bioinformatics/bts674 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Sas K. M., Karnovsky A., Michailidis G., and Pennathur S. (2015) Metabolomics and diabetes: analytical and computational approaches. Diabetes 64, 718–732 10.2337/db14-0509 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Jang C., Chen L., and Rabinowitz J. D. (2018) Metabolomics and isotope tracing. Cell 173, 822–837 10.1016/j.cell.2018.03.055 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Stumvoll M., Perriello G., Meyer C., and Gerich J. (1999) Role of glutamine in human carbohydrate metabolism in kidney and other tissues. Kidney Int. 55, 778–792 10.1046/j.1523-1755.1999.055003778.x [PubMed] [CrossRef] [Google Scholar]

37. Lehninger A. L., Nelson D. L., and Cox M. M. (2005) Lehninger Principles of Biochemistry, 4th Ed., W.H. Freeman, New York [Google Scholar]

38. Kreisberg R. A. (1972) Glucose-lactate inter-relations in man. N. Engl. J. Med. 287, 132–137 10.1056/NEJM197207202870307 [PubMed] [CrossRef] [Google Scholar]

39. Kaloyianni M., and Freedland R. A. (1990) Contribution of several amino acids and lactate to gluconeogenesis in hepatocytes isolated from rats fed various diets. J. Nutr. 120, 116–122 10.1093/jn/120.1.116 [PubMed] [CrossRef] [Google Scholar]

40. Consoli A., Nurjhan N., Reilly J. J., Bier D. M., and Gerich J. E. (1990) Contribution of liver and skeletal muscle to alanine and lactate metabolism in humans. Am. J. Physiol. 259, E677–E684 10.1152/ajpendo.1990.259.5.E677 [PubMed] [CrossRef] [Google Scholar]

41. Jenssen T., Nurjhan N., Consoli A., and Gerich J. E. (1990) Failure of substrate-induced gluconeogenesis to increase overall glucose appearance in normal humans: demonstration of hepatic autoregulation without a change in plasma glucose concentration. J. Clin. Invest. 86, 489–497 10.1172/JCI114735 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Consoli A., Nurjhan N., Reilly J. J., Bier D. M., and Gerich J. E. (1990) Mechanism of increased gluconeogenesis in noninsulin-dependent diabetes mellitus: role of alterations in systemic, hepatic, and muscle lactate and alanine metabolism. J. Clin. Invest. 86, 2038–2045 10.1172/JCI114940 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. De Meutter R. C., and Shreeve W. W. (1963) Conversion of dl-lactate-2-C14 or -3-C14 or pyruvate-2-C14 to blood glucose in humans: effects of diabetes, insulin, tolbutamide, and glucose load. J. Clin. Invest. 42, 525–533 10.1172/JCI104741 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Felig P., Pozefsky T., Marliss E., and Cahill G. F. (1970) Alanine: key role in gluconeogenesis. Science 167, 1003–1004 10.1126/science.167.3920.1003 [PubMed] [CrossRef] [Google Scholar]

45. Chochinov R. H., Perlman K., and Moorhouse J. A. (1978) Circulating alanine production and disposal in healthy subjects. Diabetes 27, 287–295 10.2337/diabetes.27.3.287 [PubMed] [CrossRef] [Google Scholar]

46. Perriello G., Pampanelli S., Del Sindaco P., Lalli C., Ciofetta M., Volpi E., Santeusanio F., Brunetti P., and Bolli G. B. (1997) Evidence of increased systemic glucose production and gluconeogenesis in an early stage of NIDDM. Diabetes 46, 1010–1016 10.2337/diabetes.46.6.1010 [PubMed] [CrossRef] [Google Scholar]

47. Stumvoll M., Perriello G., Nurjhan N., Welle S., Gerich J., Bucci A., Jansson P.-A., Dailey G., Bier D., Jenssen T., and Gerich J. (1996) Glutamine and alanine metabolism in NIDDM. Diabetes 45, 863–868 10.2337/diabetes.45.7.863 [PubMed] [CrossRef] [Google Scholar]

48. Chochinov R. H., Bowen H. F., and Moorhouse J. A. (1978) Circulating alanine disposal in diabetes mellitus. Diabetes 27, 420–426 10.2337/diabetes.27.4.420 [PubMed] [CrossRef] [Google Scholar]

49. Hankard R. G., Haymond M. W., and Darmaun D. (1997) Role of glutamine as a glucose precursor in fasting humans. Diabetes 46, 1535–1541 10.2337/diabetes.46.10.1535 [PubMed] [CrossRef] [Google Scholar]

50. Nurjhan N., Bucci A., Perriello G., Stumvoll M., Dailey G., Bier D. M., Toft I., Jenssen T. G., and Gerich J. E. (1995) Glutamine: a major gluconeogenic precursor and vehicle for interorgan carbon transport in man. J. Clin. Invest. 95, 272–277 10.1172/JCI117651 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Nurjhan N., Campbell P. J., Kennedy F. P., Miles J. M., and Gerich J. E. (1986) Insulin dose-response characteristics for suppression of glycerol release and conversion to glucose in humans. Diabetes 35, 1326–1331 10.2337/diabetes.35.12.1326 [PubMed] [CrossRef] [Google Scholar]

52. Nurjhan N., Consoli A., and Gerich J. (1992) Increased lipolysis and its consequences on gluconeogenesis in non-insulin-dependent diabetes mellitus. J. Clin. Invest. 89, 169–175 10.1172/JCI115558 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Puhakainen I., Koivisto V. A., and Yki-Järvinen H. (1992) Lipolysis and gluconeogenesis from glycerol are increased in patients with noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 75, 789–794 10.1210/jcem.75.3.1517368 [PubMed] [CrossRef] [Google Scholar]

54. Baba H., Zhang X. J., and Wolfe R. R. (1995) Glycerol gluconeogenesis in fasting humans. Nutrition 11, 149–153 [PubMed] [Google Scholar]

55. Perriello G., Jorde R., Nurjhan N., Stumvoll M., Dailey G., Jenssen T., Bier D. M., and Gerich J. E. (1995) Estimation of glucose-alanine-lactate-glutamine cycles in postabsorptive humans: role of skeletal muscle. Am. J. Physiol. 269, E443–E450 10.1152/ajpendo.1995.269.3.E443 [PubMed] [CrossRef] [Google Scholar]

56. Nurjhan N., Kennedy F., Consoli A., Martin C., Miles J., and Gerich J. (1988) Quantification of the glycolytic origin of plasma glycerol: implications for the use of the rate of appearance of plasma glycerol as an index of lipolysis in vivo. Metabolism 37, 386–389 10.1016/0026-0495(88)90140-0 [PubMed] [CrossRef] [Google Scholar]

57. Hsia D. S., Grove O., and Cefalu W. T. (2017) An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Curr. Opin. Endocrinol. Diabetes Obes. 24, 73–79 10.1097/med.0000000000000311 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Kreisberg R. A., Pennington L. F., and Boshell B. R. (1970) Lactate turnover and gluconeogenesis in normal and obese humans: effect of starvation. Diabetes 19, 53–63 10.2337/diab.19.1.53 [PubMed] [CrossRef] [Google Scholar]

59. Wang Y., Kwon H., Su X., and Wondisford F. E. (2020) Glycerol not lactate is the major net carbon source for gluconeogenesis in mice during both short and prolonged fasting. Mol. Metab. 31, 36–44 10.1016/j.molmet.2019.11.005 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Jin E. S., Sherry A. D., and Malloy C. R. (2015) Lactate contributes to glyceroneogenesis and glyconeogenesis in skeletal muscle by reversal of pyruvate kinase. J. Biol. Chem. 290, 30486–30497 10.1074/jbc.M115.689174 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Possik E., Madiraju S. R. M., and Prentki M. (2017) Glycerol-3-phosphate phosphatase/PGP: role in intermediary metabolism and target for cardiometabolic diseases. Biochimie (Paris) 143, 18–28 10.1016/j.biochi.2017.08.001 [PubMed] [CrossRef] [Google Scholar]

62. Dipple K. M., Zhang Y. H., Huang B. L., McCabe L. L., Dallongeville J., Inokuchi T., Kimura M., Marx H. J., Roederer G. O., Shih V., Yamaguchi S., Yoshida I., and McCabe E. R. (2001) Glycerol kinase deficiency: evidence for complexity in a single gene disorder. Hum. Genet. 109, 55–62 10.1007/s004390100545 [PubMed] [CrossRef] [Google Scholar]

63. Uhlen M., Fagerberg L., Hallstrom B. M., Lindskog C., Oksvold P., Mardinoglu A., Sivertsson A., Kampf C., Sjostedt E., Asplund A., Olsson I., Edlund K., Lundberg E., Navani S., Szigyarto C. A.-K., et al. (2015) Proteomics: tissue-based map of the human proteome. Science 347, 1260419–1260419 10.1126/science.1260419 [PubMed] [CrossRef] [Google Scholar]

64. Landau B. R., Wahren J., Previs S. F., Ekberg K., Chandramouli V., and Brunengraber H. (1996) Glycerol production and utilization in humans: sites and quantitation. Am. J. Physiol. 271, E1110–E1117 10.1152/ajpendo.1996.271.6.E1110 [PubMed] [CrossRef] [Google Scholar]

65. Wolfe R. R., Jahoor F., and Miyoshi H. (1988) Evaluation of the isotopic equilibration between lactate and pyruvate. Am. J. Physiol. 254, E532–E535 10.1152/ajpendo.1988.254.4.E532 [PubMed] [CrossRef] [Google Scholar]

66. Zielke H. R., Sumbilla C. M., Sevdalian D. A., Hawkins R. L., and Ozand P. T. (1980) Lactate: a major product of glutamine metabolism by human diploid fibroblasts. J. Cell. Physiol. 104, 433–441 10.1002/jcp.1041040316 [PubMed] [CrossRef] [Google Scholar]

67. Kovacevic Z., and McGivan J. D. (1983) Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol. Rev. 63, 547–605 10.1152/physrev.1983.63.2.547 [PubMed] [CrossRef] [Google Scholar]

68. Consoli A., Nurjhan N., Capani F., and Gerich J. (1989) Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM. Diabetes 38, 550–557 10.2337/diab.38.5.550 [PubMed] [CrossRef] [Google Scholar]

69. Crawford S. O., Hoogeveen R. C., Brancati F. L., Astor B. C., Ballantyne C. M., Schmidt M. I., and Young J. H. (2010) Association of blood lactate with type 2 diabetes: the Atherosclerosis Risk in Communities Carotid MRI Study. Int. J. Epidemiol. 39, 1647–1655 10.1093/ije/dyq126 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Hosogai N., Fukuhara A., Oshima K., Miyata Y., Tanaka S., Segawa K., Furukawa S., Tochino Y., Komuro R., Matsuda M., and Shimomura I. (2007) Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56, 901–911 10.2337/db06-0911 [PubMed] [CrossRef] [Google Scholar]

71. Lowell B. B., and Shulman G. I. (2005) Mitochondrial dysfunction and type 2 diabetes. Science 307, 384–387 10.1126/science.1104343 [PubMed] [CrossRef] [Google Scholar]

72. Del Prato S., Bonadonna R. C., Bonora E., Gulli G., Solini A., Shank M., and DeFronzo R. A. (1993) Characterization of cellular defects of insulin action in type 2 (non-insulin-dependent) diabetes mellitus. J. Clin. Invest. 91, 484–494 10.1172/JCI116226 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Kelley D. E., Slasky B. S., and Janosky J. (1991) Skeletal muscle density: effects of obesity and non-insulin-dependent diabetes mellitus. Am. J. Clin. Nutr. 54, 509–515 10.1093/ajcn/54.3.509 [PubMed] [CrossRef] [Google Scholar]

74. Chen S., Akter S., Kuwahara K., Matsushita Y., Nakagawa T., Konishi M., Honda T., Yamamoto S., Hayashi T., Noda M., and Mizoue T. (2019) Serum amino acid profiles and risk of type 2 diabetes among Japanese adults in the Hitachi Health Study. Sci. Rep. 9, 7010 10.1038/s41598-019-43431-z [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Stancakova A., Civelek M., Saleem N. K., Soininen P., Kangas A. J., Cederberg H., Paananen J., Pihlajamaki J., Bonnycastle L. L., Morken M. A., Boehnke M., Pajukanta P., Lusis A. J., Collins F. S., Kuusisto J., et al. (2012) Hyperglycemia and a common variant of GCKR are associated with the levels of eight amino acids in 9,369 Finnish men. Diabetes 61, 1895–1902 10.2337/db11-1378 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Ferrannini E., Natali A., Camastra S., Nannipieri M., Mari A., Adam K.-P., Milburn M. V., Kastenmüller G., Adamski J., Tuomi T., Lyssenko V., Groop L., and Gall W. E. (2013) Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance. Diabetes 62, 1730–1737 10.2337/db12-0707 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Wang T. J., Larson M. G., Vasan R. S., Cheng S., Rhee E. P., McCabe E., Lewis G. D., Fox C. S., Jacques P. F., Fernandez C., O'Donnell C. J., Carr S. A., Mootha V. K., Florez J. C., Souza A., et al. (2011) Metabolite profiles and the risk of developing diabetes. Nat. Med. 17, 448–453 10.1038/nm.2307 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Floegel A., Stefan N., Yu Z., Mühlenbruch K., Drogan D., Joost H.-G., Fritsche A., Häring H.-U., Hrabě de Angelis M., Peters A., Roden M., Prehn C., Wang-Sattler R., Illig T., Schulze M. B., et al. (2013) Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 62, 639–648 10.2337/db12-0495 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Tillin T., Hughes A. D., Wang Q., Würtz P., Ala-Korpela M., Sattar N., Forouhi N. G., Godsland I. F., Eastwood S. V., McKeigue P. M., and Chaturvedi N. (2015) Diabetes risk and amino acid profiles: cross-sectional and prospective analyses of ethnicity, amino acids and diabetes in a South Asian and European cohort from the SABRE (Southall And Brent REvisited) Study. Diabetologia 58, 968–979 10.1007/s00125-015-3517-8 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Adegoke O. A. J., Chevalier S., Morais J. A., Gougeon R., Kimball S. R., Jefferson L. S., Wing S. S., and Marliss E. B. (2009) Fed-state clamp stimulates cellular mechanisms of muscle protein anabolism and modulates glucose disposal in normal men. Am. J. Physiol. Endocrinol. Metab. 296, E105–E113 10.1152/ajpendo.90752.2008 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Chevalier S., Burgess S. C., Malloy C. R., Gougeon R., Marliss E. B., and Morais J. A. (2006) The greater contribution of gluconeogenesis to glucose production in obesity is related to increased whole-body protein catabolism. Diabetes 55, 675–681 10.2337/diabetes.55.03.06.db05-1117 [PubMed] [CrossRef] [Google Scholar]

82. Sreekumar R., Halvatsiotis P., Schimke J. C., and Nair K. S. (2002) Insulin effect on leucine kinetics in type 2 diabetes mellitus. Diabetes Nutr. Metab. 51, 1913–1942 10.2337/diabetes.51.6.1913 [PubMed] [CrossRef] [Google Scholar]

83. Pereira S., Marliss E. B., Morais J. A., Chevalier S., and Gougeon R. (2008) Insulin resistance of protein metabolism in type 2 diabetes. Diabetes 57, 56–63 10.2337/db07-0887 [PubMed] [CrossRef] [Google Scholar]

84. Munhoz da Rocha Lemos Costa T., Costa F. M., Jonasson T. H., Moreira C. A., Boguszewski C. L., and Borba V. Z. C. (2018) Body composition and sarcopenia in patients with chronic obstructive pulmonary disease. Endocrine 60, 95–102 10.1007/s12020-018-1533-4 [PubMed] [CrossRef] [Google Scholar]

85. Mesinovic J., Zengin A., De Courten B., Ebeling P. R., and Scott D. (2019) Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. Diabetes Metab. Syndr. Obes. 12, 1057–1072 10.2147/DMSO.S186600 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Sugimoto K., Tabara Y., Ikegami H., Takata Y., Kamide K., Ikezoe T., Kiyoshige E., Makutani Y., Onuma H., Gondo Y., Ikebe K., Ichihashi N., Tsuboyama T., Matsuda F., Kohara K., et al. (2019) Hyperglycemia in non-obese patients with type 2 diabetes is associated with low muscle mass: the multicenter study for clarifying evidence for sarcopenia in patients with diabetes mellitus. J. Diabetes Investig. 10, 1471–1479 10.1111/jdi.13070 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Mahendran Y., Cederberg H., Vangipurapu J., Kangas A. J., Soininen P., Kuusisto J., Uusitupa M., Ala-Korpela M., and Laakso M. (2013) Glycerol and fatty acids in serum predict the development of hyperglycemia and type 2 diabetes in Finnish men. Diabetes Care 36, 3732–3738 10.2337/dc13-0800 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Morigny P., Houssier M., Mouisel E., and Langin D. (2016) Adipocyte lipolysis and insulin resistance. Biochimie (Paris) 125, 259–266 10.1016/j.biochi.2015.10.024 [PubMed] [CrossRef] [Google Scholar]

89. Kalemba K. M., Wang Y., Xu H., Chiles E., McMillin S. M., Kwon H., Su X., and Wondisford F. E. (2019) Glycerol induces G6pc in primary mouse hepatocytes and is the preferred substrate for gluconeogenesis both in vitro and in vivo. J. Biol. Chem. 294, 18017–18028 10.1074/jbc.ra119.011033 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Hui S., Ghergurovich J. M., Morscher R. J., Jang C., Teng X., Lu W., Esparza L. A., Reya T., Zhan L., Yanxiang Guo J., White E., and Rabinowitz J. D. (2017) Glucose feeds the TCA cycle via circulating lactate. Nature 551, 115–118 10.1038/nature24057 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Maeda Junior A. S., Constantin J., Utsunomiya K. S., Gilglioni E. H., Gasparin F. R. S., Carreño F. O., de Moraes S. M. F., Rocha M., Natali M. R. M., Ghizoni C. V. C., Bracht A., Ishii-Iwamoto E. L., and Constantin R. P. (2018) Cafeteria diet feeding in young rats leads to hepatic steatosis and increased gluconeogenesis under fatty acids and glucagon influence. Nutrients 10, 1571 10.3390/nu10111571 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. de Castro Ghizoni C. V., Gasparin F. R. S., Júnior A. S. M., Carreño F. O., Constantin R. P., Bracht A., Ishii Iwamoto E. L., and Constantin J. (2013) Catabolism of amino acids in livers from cafeteria-fed rats. Mol. Cell. Biochem. 373, 265–277 10.1007/s11010-012-1499-0 [PubMed] [CrossRef] [Google Scholar]

93. Yoshida M., Lee E. Y., Kohno T., Tanaka T., Miyazaki M., and Miki T. (2016) Importance of hepatocyte nuclear factor 4α in glycerol-induced glucose-6-phosphatase expression in liver. Biomed. Res. 37, 85–93 10.2220/biomedres.37.85 [PubMed] [CrossRef] [Google Scholar]

94. Burgess S. C., He T., Yan Z., Lindner J., Sherry A. D., Malloy C. R., Browning J. D., and Magnuson M. A. (2007) Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver. Cell Metab. 5, 313–320 10.1016/j.cmet.2007.03.004 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Samuel V. T., Beddow S. A., Iwasaki T., Zhang X.-M., Chu X., Still C. D., Gerhard G. S., and Shulman G. I. (2009) Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with type 2 diabetes. Proc. Natl. Acad. Sci. U. S. A. 106, 12121–12126 10.1073/pnas.0812547106 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Landau B. R., Wahren J., Chandramouli V., Schumann W. C., Ekberg K., and Kalhan S. C. (1996) Contributions of gluconeogenesis to glucose production in the fasted state. J. Clin. Invest. 98, 378–385 10.1172/JCI118803 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Landau B. R., Wahren J., Chandramouli V., Schumann W. C., Ekberg K., and Kalhan S. C. (1995) Use of 2H2O for estimating rates of gluconeogenesis: application to the fasted state. J. Clin. Invest. 95, 172–178 10.1172/JCI117635 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Kunert O., Stingl H., Rosian E., Krssak M., Bernroider E., Seebacher W., Zangger K., Staehr P., Chandramouli V., Landau B. R., Nowotny P., Waldhausl W., Haslinger E., and Roden M. (2003) Measurement of fractional whole-body gluconeogenesis in humans from blood samples using 2H nuclear magnetic resonance spectroscopy. Diabetes 52, 2475–2482 10.2337/diabetes.52.10.2475 [PubMed] [CrossRef] [Google Scholar]

100. Tayek J. A., and Katz J. (1996) Glucose production, recycling, and gluconeogenesis in normals and diabetics: a mass isotopomer [U-13C]glucose study. Am. J. Physiol. 270, E709–E717 10.1152/ajpendo.1996.270.4.E709 [PubMed] [CrossRef] [Google Scholar]

101. Magnusson I., Rothman D. L., Katz L. D., Shulman R. G., and Shulman G. I. (1992) Increased rate of gluconeogenesis in type II diabetes mellitus: a 13C nuclear magnetic resonance study. J. Clin. Invest. 90, 1323–1327 10.1172/JCI115997 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Landau B. R. (2001) Methods for measuring glycogen cycling. Am. J. Physiol. Endocrinol. Metab. 281, E413–E419 10.1152/ajpendo.2001.281.3.E413 [PubMed] [CrossRef] [Google Scholar]

103. Shulman G. I., and Landau B. R. (1992) Pathways of glycogen repletion. Physiol. Rev. 72, 1019–1035 10.1152/physrev.1992.72.4.1019 [PubMed] [CrossRef] [Google Scholar]

104. Radziuk J. (1989) Hepatic glycogen in humans. I. Direct formation after oral and intravenous glucose or after a 24-h fast. Am. J. Physiol. 257, E145–E157 10.1152/ajpendo.1989.257.2.E145 [PubMed] [CrossRef] [Google Scholar]

105. Radziuk J. (1989) Hepatic glycogen in humans. II. Gluconeogenetic formation after oral and intravenous glucose. Am. J. Physiol. 257, E158–E169 10.1152/ajpendo.1989.257.2.E158 [PubMed] [CrossRef] [Google Scholar]

106. Hellerstein M. K., Neese R. A., Linfoot P., Christiansen M., Turner S., and Letscher A. (1997) Hepatic gluconeogenic fluxes and glycogen turnover during fasting in humans: a stable isotope study. J. Clin. Invest. 100, 1305–1319 10.1172/JCI119644 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Park S., Sadanala K. C., and Kim E. K. (2015) A metabolomic approach to understanding the metabolic link between obesity and diabetes. Mol. Cells 38, 587–596 10.14348/molcells.2015.0126 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Guasch-Ferre M., Hruby A., Toledo E., Clish C. B., Martínez-González M. A., Salas-Salvadó J., and Hu F. B. (2016) Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care 39, 833–846 10.2337/dc15-2251 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Del Coco L., Vergara D., De Matteis S., Mensà E., Sabbatinelli J., Prattichizzo F., Bonfigli A. R., Storci G., Bravaccini S., Pirini F., Ragusa A., Casadei-Gardini A., Bonafè M., Maffia M., Fanizzi F. P., et al. (2019) NMR-based metabolomic approach tracks potential serum biomarkers of disease progression in patients with type 2 diabetes mellitus. J. Clin. Med. 8, 720 10.3390/jcm8050720 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Tam Z. Y., Ng S. P., Tan L. Q., Lin C.-H., Rothenbacher D., Klenk J., and Boehm B. O, and ActiFE Study Group (2017) Metabolite profiling in identifying metabolic biomarkers in older people with late-onset type 2 diabetes mellitus. Sci. Rep. 7, 4392 10.1038/s41598-017-01735-y [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Urpi-Sarda M., Almanza-Aguilera E., Tulipani S., Tinahones F. J., Salas-Salvadó J., and Andres-Lacueva C. (2015) Metabolomics for biomarkers of type 2 diabetes mellitus: advances and nutritional intervention trends. Curr. Cardiovasc. Risk Rep. 9, 12 10.1007/s12170-015-0440-y [CrossRef] [Google Scholar]

112. Ahlqvist E., Storm P., Käräjämäki A., Martinell M., Dorkhan M., Carlsson A., Vikman P., Prasad R. B., Aly D. M., Almgren P., Wessman Y., Shaat N., Spégel P., Mulder H., Lindholm E., et al. (2018) Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 6, 361–369 10.1016/S2213-8587(18)30051-2 [PubMed] [CrossRef] [Google Scholar]