How many possible 3 digit password can be formed from numbers 0 to 3 without repetition

how many $3$ digit numbers can be formed by $1,2,3,4$, when the repetition of digits is allowed?

So basically, I attempted this question as-

There are 4 numbers and 3 places to put in the numbers: In the ones place, any 4 numbers can be put, so there are 4 choices in the ones place. Similarly for the tens and the hundreds place. So, the total choices are, by multiplication principle- $$4*4*4=64$$ And well and good, this was the answer.

But what if I reversed the method?

So I take some particular numbers, like $1,2,3$ and say that, well, $1$ can go in $3$ places, $2$ in $2$ places and $3$ in $1$ place, so by multiplication principle, there are $6$ ways of forming a $3$-digit number with $1,2,3$.

But there are $4$ different numbers. So the number of $3$-number combinations are- $(1,2,3)$,$(1,2,4)$,$(1,3,4)$,$(2,3,4)$. Each can be arranged in $6$ ways, so we get $24$ ways totally.

So why is my answer different here?

Problem 1: How many 3-digit numbers can be formed from the digits 1, 2, 3, 4 and 5 assuming that – 

(i) repetition of the digits is allowed?

Solution: 

Answer: 125.

Method:

Here, Total number of digits = 5

Let 3-digit number be XYZ.

Now the number of digits available for X = 5,

As repetition is allowed,

So the number of digits available for Y and Z will also be 5 (each).

Thus, The total number of 3-digit numbers that can be formed = 5×5×5 = 125.

(ii) repetition of the digits is not allowed? 

Solution:

Answer: 60.

Method:

Here, Total number of digits = 5

Let 3-digit number be XYZ.

Now the number of digits available for X = 5,

As repetition is not allowed,

So the number of digits available for Y = 4 (As one digit has already been chosen at X),

Similarly, the number of digits available for Z = 3.

Thus, The total number of 3-digit numbers that can be formed = 5×4×3 = 60.

Problem 2: How many 3-digit even numbers can be formed from the digits 1, 2, 3, 4, 5, 6 if the digits can be repeated?

Solution:

Answer: 108.

Method:

Here, Total number of digits = 6

Let 3-digit number be XYZ.

Now, as the number should be even so the digits at unit place must be even, so number of digits available for Z = 3 (As 2,4,6 are even digits here),

As the repetition is allowed,

So the number of digits available for X = 6,

Similarly, the number of digits available for Y = 6.

Thus, The total number of 3-digit even numbers that can be formed = 6×6×3 = 108.

Problem 3: How many 4-letter code can be formed using the first 10 letters of the English alphabet if no letter can be repeated? 

Solution:

Answer: 5040

Method:

Here, Total number of letters = 10

Let the 4-letter code be 1234.

Now, the number of letters available for 1st place = 10,

As repetition is not allowed,

So the number of letters possible at 2nd place = 9 (As one letter has already been chosen at 1st place),

Similarly, the number of letters available for 3rd place = 8,

and the number of letters available for 4th place = 7.

Thus, The total number of 4-letter code that can be formed = 10×9×8×7 = 5040.

Problem 4: How many 5-digit telephone numbers can be constructed using the digits 0 to 9 if each number starts with 67 and no digit appears more than once?

Solution:

Answer: 336

Method:

Here, Total number of digits = 10 (from 0 to 9)

Let 5-digit number be ABCDE.

Now, As the number should start from  67 so the number of possible digits at A and B = 1 (each),

As repetition is not allowed,

So the number of digits available for C = 8 ( As 2 digits have already been chosen at A and B),

Similarly, the number of digits available for D = 7,

and the number of digits available for E = 6.

Thus, The total number of 5-digit telephone numbers that can be formed = 1×1×8×7×6 = 336.

Problem 5: A coin is tossed 3 times and the outcomes are recorded. How many possible outcomes are there?

Solution:

Answer: 8

Method:

We know that, the possible outcome after tossing a coin is either head or tail (2 outcomes),

Here, a coin is tossed 3 times and outcomes are recorded after each toss,

Thus, the total number of outcomes = 2×2×2 = 8.

Problem 6: Given 5 flags of different colours, how many different signals can be generated if each signal requires the use of 2 flags, one below the other?

Solution:

Answer: 20.

Method:

Here, Total number of flags = 5

As each signal requires 2 flag and signals should be different so repetition will not be allowed,

So, the number of flags possible for the upper place = 5,

and the number of flags possible for the lower place = 4.

Thus, the total number of different signals that can be generated = 5×4 = 20.

How many 3 digit numbers can be formed if repetition is not allowed?

There are 504 different 3-digit numbers which can be formed from numbers 1, 2, 3, 4, 5, 6, 7, 8, 9 if no repetition is allowed. Note: We can also use the multiplication principle to answer this question.

How many 3 digit numbers can be formed using 0 9 if repetition is allowed?

We have to find the number of arrangements of 3 digits which can be formed from digits 0 to 9. Therefore, in 1000 arrangements 3 digits can be formed from the digits 0 through 9.

How many passwords can you make with 3 numbers?

Therefore in that set of 720 possibilities, each unique combination of three digits is represented 6 times. So we just divide by 6. 720 / 6 = 120. That's your answer.

How many 3 digit numbers can be formed from the digits 12345 without repetition?

Thus, The total number of 3-digit numbers that can be formed = 5×5×5 = 125.